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Abstract
The phenomenology of a radiating Schwarzschild black hole is analysed in
a noncommutative spacetime. It is shown that noncommutativity does not
depend on the intensity of the curvature. Thus, we legitimately introduce
noncommutativity in the weak field limit by a coordinate coherent state
approach. The new interesting results are the following: (i) the existence of a
minimal nonzero mass to which black hole can shrink; (ii) a finite maximum
temperature that the black hole can reach before cooling down to absolute zero;
(iii) the absence of any curvature singularity. The proposed scenario offers
a possible solution to conventional difficulties when describing the terminal
phase of black hole evaporation.

PACS numbers: 04.70.Dy, 02.40.Gh

In 1975, Hawking showed that a black hole is able to emit radiation and thus to evaporate
[1]. This is one of the most intriguing phenomena in the theory of gravitation, which, after
30 years, still remains under debate in particular for what concerns the mysterious explosive
end of radiating black holes (see [2] for a recent review with an extensive reference list). The
black hole phenomenology is part of a larger research area, whose final goal is the formulation
of a full quantum theory of gravity. In spite of the promising results that string theory has had
in quantizing gravity, the actual calculations of the Hawking radiation are currently obtained
by means of quantum field theory in curved space [3]. In fact, the black hole evaporation
occurs in a semiclassical regime, namely when the density of gravitons is lower than that
of the matter field quanta. In spite of these achievements, the divergent behaviour of the
black hole temperature in the final stage of the evaporation remains rather obscure. Indeed,
in this extreme regime, stringy effects cannot be neglected. Recently, an improved version of
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field theory on a noncommutative spacetime manifold has been proposed as a cheaper way to
reproduce the stringy phenomenology, at least in the low energy limit. Noncommutativity is
encoded in the commutator

[xµ, xν] = iθµν, (1)

where θµν is an antisymmetric matrix which determines a fundamental cell discretization of
spacetime much in the same way as the Planck constant h̄ discretizes the phase space. The basic
motivation for assuming (1) consists in an attempt of curing the bad short distance behaviour
of pointlike sources in ordinary field theory [4], a problem that is only partially solved even in
the context of string theory. Indeed, preliminary results in a 2D noncommutative spacetime
suggest further investigation in this field [5].

The purpose of the letter is to understand whether noncommutativity is able to cure the
pathologies which occur in the theory of gravitation, such as the divergent behaviour of the
black hole temperature during the final stage of the collapse and the curvature singularity at
the black hole centre. The most direct way to reach this goal is to employ the linearized
gravitational field equations as a temporary laboratory to test the effect of noncommutativity
until the complete Einstein field equation will be analysed. There are three good reasons
for doing this. First, noncommutativity is an intrinsic property of the manifold and does not
depend on the curvature. Indeed, there are many examples of noncommutative field theory in
flat space, namely in absence of gravity. Thus, if any effect is produced by noncommutativity,
it must also appear in the weak field regime. Second, the concept of ‘weak’ or ‘strong’ field
makes sense only if one compares the field strength with a proper scale. In the theory of
gravitation, we are given a natural and unique scale, that is the Planck scale. Thus, with
respect to the Planck scale, the gravitational field strength can still be considered ‘weak’ even
in the vicinity of a black hole, justifying the adoption of linearized field equations until the
horizon radius is larger than lPl, the Planck length. Third, we will show that, in the considered
case of Schwarzschild geometry, the expression of the temperature does not depend on the
weak field expansion.

In this spirit, we assume as infinitesimal dimensionless parameter

φN

φPl
� 1, (2)

where φN is the Newtonian potential, while φPl = MPl/lPl, with MPl the Planck mass. As a
peculiar aspect of Schwarzschild spacetime, we observe that g11 is the only component of the
metric tensor that is affected by linearization. Indeed, the line element reads

ds2 = −
(

1 +
2φN

φPl

)
dt2 + dl2, (3)

where dl2 is the Euclidean spatial line element. The Hawking temperature is given by the
definition

TH ≡ −
(

1

4π
√−g00 g11

dg00

dr

)
r=rH

. (4)

As anticipated, one finds the temperature TH = 1/8πM , that is coincident with the expression
given by the exact theory, since TH essentially depends on g00 only.

There are many approaches to implement noncommutativity in a field theory. The
underlying philosophy of these approaches is to modify the distribution of pointlike sources in
favour of smeared objects. Such prescription is in agreement with the conventional procedure
for the regularization of ultraviolet divergences by the introduction of a cut-off. In recent
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papers [6, 7], the coordinate coherent state approach has been proposed and the precise
distribution of field sources has been determined to be the Gaussian distribution. The resulting
field theory is ultraviolet finite while Lorentz invariance and unitarity are preserved [8]. In
order to incorporate noncommutativity, one can observe that there exists a unique linearized
Einstein equation

�∇2φN = 4πGNδ(r), (5)

namely the classical Poisson equation for a pointlike source described by Dirac delta function,
with M the mass of the source and GN the Newton constant. At this point, we stress
that noncommutativity is an intrinsic property of the manifold, the contrary of curvature,
that is a geometrical tool defined over the underlying manifold to measure the strength of
the gravitational field. For these reasons, curvature and noncommutativity are independent
concepts. Thus, noncommutative modification of Schwarzschild spacetime, once introduced at
a given curvature, will remain valid in any other field strength regime. Our way of reasoning is
in perfect agreement with the standard procedure to implement noncommutativity in quantum
field theory where the strength of the field is not an issue [6, 7]. The physical effect of
noncommutativity is that the very concept of pointlike object is no more meaningful and
one has to deal with smeared objects only. To practical purpose, the implementation of
noncommutativity by means of coherent state approach is realized by substituting the position
Dirac delta, characterizing pointlike structures, with Gaussian function of minimal width

√
θ

describing the corresponding smeared structures. At this point, the noncommutative field
equation reads [9]

�∇2φN = 4πGNρθ (�x), ρθ (�x) = M

(2πθ)3/2
exp(−�x2/4θ), (6)

where ρθ is the Gaussian mass density. We obtain the noncommutative version of the linearized
Schwarzschild line element as

ds2 = −
(

1 +
2γφN√
πφPl

)
dt2 + dl2, (7)

where γ is the lower incomplete gamma function, with the definition

γ ≡ γ (1/2, r2/4θ) ≡
∫ r2/4θ

0
dt t−1/2 e−t . (8)

In the commutative limit r/
√

θ → ∞, the standard linearized Schwarzschild metric is
reproduced. The line element (7) describes the geometry of a noncommutative black hole
under the condition that rH � lPl and should give us useful indications about possible
noncommutative effects on the Hawking radiation.

To calculate the Hawking temperature we need the event horizon radius rH, that is defined
by the vanishing of ‘unperturbed’ g00. In our case, it leads to the implicit equation1

rH = 2M√
π

γ
(
1/2, r2

H

/
4θ

)
. (9)

Rewriting (9) in terms of the upper incomplete gamma function as

rH = 2M

[
1 − 1√

π
�

(
1/2, r2

H

/
4θ

)]
, (10)

1 We use convenient units GN = 1, c = 1.
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Figure 1. Mass versus horizon relation. In the commutative case, dashed line, the mass is the
linear function M = rH/2 vanishing at the origin, while in the noncommutative case, solid line,
M(rH → 0) = M0, i.e. for M < M0 there is no event horizon.

one recovers the conventional Schwarzschild radius plus θ -corrections. In the ‘large radius’
regime r2

H

/
4θ � 1, equation (10) can be solved by iteration. At the first-order approximation,

we find

rH = 2M

(
1 −

√
θ

π

1

M
e−M2/θ

)
. (11)

The effect of noncommutativity is exponentially small, which is reasonable to expect, since
for large radii with respect to

√
θ , spacetime can be considered as a smooth classical manifold

(commutative limit). On the other hand, in the opposite limit, one expects significant changes
due to the spacetime fuzziness. To this purpose, it is convenient to invert (10) and consider
the black hole mass M as a function of rH

M(rH) = rH
√

π

2γ
(
1/2, r2

H

/
4θ

) . (12)

In such a limit, i.e. rH/
√

θ � 1, equation (12) leads to

M → M0 = 0.5
√

πθ, (13)

which is a new and interesting result. Noncommutativity implies a minimal nonzero mass
that allows the existence of an event horizon (see figure 1). If the starting black hole mass is
such that M > M0, it can radiate through the Hawking process until the value M0 is reached.
At this point, the horizon has totally evaporated leaving behind a massive relic. Black holes
with mass M < M0 do not exist. An equivalent scenario arises from the behaviour of g00 (see
figure 2). There are three pictures:

(i) for M > M0 (dotted curve), there is a black hole with regular metric in the origin;
(ii) for M = M0 (solid curve), the event horizon is shrunk to the origin;

(iii) for M < M0 (dashed curve), there is no horizon.
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Figure 2. The function −g00 versus the radial distance r for some value of the mass M. The
dashed line corresponds to a mass M = 0.5M0 for which there is no event horizon. The dotted
line corresponds to a mass M = 2M0, which describes a black hole, which is regular at its centre
r = 0. The solid curve is the borderline case, namely the case of M = M0 in which the horizon
radius rH is shrunk in the origin.

To understand the physical nature of the mass M0 remnant, let us also consider the black
hole temperature as a function of rH. It is given by

TH(rH) = 1

4π

[
1

rH
− γ ′(1/2; r2

H

/
4θ

)
γ
(
1/2; r2

H

/
4θ

)
]

, (14)

where the ‘prime’ denotes differentiation with respect to r. In the large radii limit, i.e.
r2

H

/
4θ � 1, one recovers the standard result for the Hawking temperature

TH = 1

4πrH
, (15)

while noncommutativity becomes crucial, when rH ∼ √
θ . In the commutative case, TH

diverges and this puts limit on the validity of the conventional description of Hawking radiation.
Against this scenario, formula (14) leads to

TH ∼ rH

24πθ
, as

rH√
θ

→ 0. (16)

This is another intriguing result that has two important consequences. Firstly, the emerging
picture is that the black hole has reached zero temperature and the horizon has completely
evaporated. Nevertheless, we are left with a frozen, massive, remnant. Secondly, passing from
the regime of large radius to the regime of small radius, (15) and (16), implies the existence
of a maximum temperature which is confirmed by the plot in figure 3. The plot gives the
value T max

H = 2.18 × 10−2/
√

θ . The temperature behaviour shows that noncommutativity
plays the same role in general relativity as in quantum field theory, i.e. removes short distance
divergences. The resulting picture of black hole behaviour goes as follows. For M � M0, the
temperature is given by (15) up to exponentially small corrections and it increases as the mass
is radiated away. TH reaches a maximum value at rH = 2.74

√
θ , and then decreases down to

zero as rH goes to zero.
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Figure 3. Hawking temperature TH as a function of the horizon radius rH. In the noncommutative
case, solid curve, one sees that the temperature reaches a maximum value T max

H = 2.18×10−2/
√

θ

for rH = 2.74
√

θ , and then decreases to zero as rH → 0. The commutative, divergent behaviour,
dashed curve, is cured.

At this point, important issue of Hawking radiation back-reaction should be discussed. In
the commutative case, one expects relevant back-reaction effects during the terminal stage
of evaporation because of huge increase of temperature [10]. In our case, the role of
noncommutativity is to cool down the black hole in the final stage. As a consequence,
there is a suppression of quantum back-reaction, since the black hole emits less and less
energy. Eventually, back-reaction may be relevant during the maximum temperature phase.
In order to estimate its importance in this region, let us look at the thermal energy E = T and
the total mass M near rH = 2.74

√
θ . From (12), one finds M ∼ √

θM2
Pl. In order to have

significant back-reaction effect, T max
H should be of the same order of magnitude as M. This

condition leads to the estimate√
θ ∼ 10−1lPl ∼ 10−34 cm. (17)

Expected values of
√

θ are above the Planck length lPl and (17) indicates that back-reaction
effects are suppressed even at T max

H ≈ 1018 GeV. For this reason, we can safely use unmodified
form of the metric (7) during all the evaporation process.

As it appears, at the final stage of evaporation, a mass M0 is left behind. One would be
tempted to say that the black hole evaporation has produced a naked singularity of mass M0.
We are going to show that this is not the case. In the linearized geometry, the curvature tensors
can be written in terms of the Ricci scalar R. Thus, for the metric (7), the curvature tensors are
everywhere regular, since the scalar R turns out to be (see figure 4)

R = −8πGNρθ . (18)

In particular, for what concerns the case of a naked singularity, one should obtain a divergent
curvature in the origin, while the short distance behaviour of R is

R � − M√
πθ3/2

. (19)

Indeed, for r � √
θ , the geometry of the frozen relic has constant and negative curvature. On

the other hand, in the commutative limit r/
√

θ � 1, one can check that (18) reproduces the
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Figure 4. Ricci scalar as a function of r. The curvature singularity in the origin is removed and
R(0) = −M/

√
πθ3/2.

usual Schwarzschild scalar curvature. Indeed, the Dirac delta distribution is restored in (18)
at large distances.

Regular black holes have been introduced as ad hoc models implementing the idea of a
maximum curvature [11]. On the other hand, we have found here an equivalent non-singular
black hole as a solution of linearized Einstein equations with a source suitably prescribed by
coordinate noncommutativity.

As a conclusion, the results derived in this work show that the coordinate coherent state
approach to noncommutative effects can cure the singularity problems at the terminal stage
of black hole evaporation. We have shown that noncommutativity is an intrinsic property
of the manifold itself and thus unaffected by the distribution of matter. Matter curves a
noncommutative manifold in the same way as it curves a commutative one, but cannot produce
singular structures. Specifically, we have shown that there is a minimal mass M0 = 0.5

√
πθ

to which a black hole can decay through Hawking radiation. The reason why it does not
end up into a naked singularity is due to the finiteness of the curvature at the origin. The
everywhere regular geometry and the residual mass M0 are both manifestations of the Gaussian
delocalization of the source in the noncommutative spacetime. On the thermodynamic side,
the same kind of regularization takes place eliminating the divergent behaviour of Hawking
temperature. As a consequence, there is a maximum temperature that the black hole can
reach before cooling down to absolute zero. As already anticipated in the introduction,
noncommutativity regularizes divergent quantities in the final stage of black hole evaporation
in the same way as it cured ultraviolet infinities in noncommutative quantum field theory. We
have also estimated that back-reaction does not modify the original metric in a significant
manner.
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‘Modelli della teoria cinetica matematica nello studio dei sistemi complessi nelle scienze
applicate’ and the CNR-NATO programme for financial support.



L638 Letter to the Editor

References

[1] Hawking S W 1975 Commun. Math. Phys. 43 199
[2] Padmanabhan T 2005 Phys. Rep. 406 49
[3] Balbinot R, Fabbri A, Nicolini P and Sutton P J 2002 Phys. Rev. D 66 024014

Balbinot R, Fabbri A, Frolov V, Nicolini P, Sutton P J and Zelnikov A 2001 Phys. Rev. D 63 084029
[4] Nicolini P 2004 Vacuum energy momentum tensor in (2 + 1) NC scalar field theory Preprint hep-th/0401204
[5] Nicolini P, Smailagic A and Spallucci E 2005 The fate of radiating black holes in noncommutative geometry

Preprint hep-th/0507226
[6] Smailagic A and Spallucci E 2003 J. Phys. A: Math. Gen. 36 L467
[7] Smailagic A and Spallucci E 2003 J. Phys. A: Math. Gen. 36 L517
[8] Smailagic A and Spallucci E 2004 J. Phys. A: Math. Gen. 37 7169
[9] Gruppuso A 2005 J. Phys. A: Math. Gen. 38 2039

[10] Balbinot R and Barletta A 1989 Class. Quantum Grav. 6 195
Balbinot R and Barletta A 1989 Class. Quantum Grav. 6 203

[11] Easson D A 2003 J. High Energy Phys. JHEP02(2003)037
Hayward S A 2005 Formation and evaporation of regular black holes Preprint gr-qc/0506126


	
	Acknowledgments
	References

